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Thermoelectric effects in a Luttinger liquidlL ) wire adiabatically connected to the leads of
noninteracting electrons are considered. For a multichannel LL a staircase-like behavior of the
thermal conductance as a function of chemical potential is found. The thermopower for a

LL wire with an impurity is evaluated for two case$) LL constriction, and(ii) infinite LL wire.

We show that the thermopower is described a Mott-like formula renormalized by an
interaction-dependent factor. For an infinite LL the renormalization factor decreases with increase
of the interaction. However, for a realistic situation, when a LL wire is connected to the

leads of noninteracting electroiflsL constriction, the repulsive electron-electron interaction
enhances the thermopower. A nonlinear Peltier effect in a LL is briefly discussed.

© 2001 American Institute of Physic§DOI: 10.1063/1.1414571

1. INTRODUCTION are neutral, whereas their topological excitations carry
charge and spin.

Charge and heat transport through a narrow wire whose  Since the LL and the FL have qualitatively different ex-
width is comparable to the electron Fermi wavelength occutitation spectra, the transport properties of LLs have been the
via a finite number of transport channels associated witlsubject of theoretical interest, and it was shown rather ®arly
quantization of the electron’s transverse momentum in thehat the electric conductand® of an impurity-free infinite
wire. Furthermore, at low temperatures the phase-breakinglL depends on the interelectron interaction, i85gG,
length, A ,(T), can exceed the length of the wirk,(T)  whereG,=e? h is the quantum of conductance agds the
>L, and the electron transport becomes phase coherent. Himensionless electron—electron interaction parameter of the
the Landauer approatto such quantum mechanical trans- LL. Subsequent intensive investigations pertaining to trans-
port problems the complexity of calculating the relevantport properties of LLs were triggered by the studies of Kane
transport coefficients is reduced to a single-particle scatteringnd Fishet and of Glazmanet al,® who considered the
problem, with the transport properties of the electrons detransport of charge through a local impurity in the LL, find-
scribed in terms of the probability for transmission of theing that for repulsive electron-electron interactions the con-
electrons through the effective scattering potential repreductance scales with temperatie¢ low temperaturgsas a
sented by the wire. Indeed, this approach, whose implemerpower lawG(T)~T?9~2; such behavior has been reported
tation is often simpler than the use of the Kubo treatment ofn recent experiments®
such problems, has proved to be most useful for the descrip- Heat transport in a LL was first considered in Ref. 9,
tion of the transport properties of noninteracting electronsyhere it was shown that in an infinite homogeneous LL the
through wires(constrictions of reduced dimension@ee re-  thermal conductanck(T) is not renormalized by the inter-
views in Ref. 2. actions, i.e.K(T)=K(T)=(#2/3)k5T/h, while in the pres-

It is well known that for strictly one-dimension&lD)  ence of an impurityK (T)~T3. This result, together with the
interacting electron systems the Fermi liquieL) descrip-  one for the electrical conductance, predicts violation of the
tion of the low-energy excitations does not hold. Instead, folwiedemann-Franz law in a LL.
such systems with interactions which leave the electronic  The above results, which were derived for effectively
spectrum gapless, the corresponding “long-wavelength'infinite LLs, cannot be tested directly in quantum wires con-
theory is that of the Luttinger liquid_L).? Unlike the Fermi  nected to source and drain leads. To address this issue, the
liquid description, where charged excitations are representemlansport properties of the LL were considered for a finite 1D
by quasiparticles(electrons and holgs electrons do not wire adiabatically connected to FL leads modeled by 1D res-
propagate in afinfinite) LL. Rather, the excitation spectrum ervoirs of noninteracting electrons. The results obtained for
of the LL consists of gapless bosonic excitatidoisarge and such a finite and impurity-free LL wire were found to be
spin density waves harmonic oscillations of boson fields qualitatively different from those derived for the infinite LL.
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In particular, it was shown that for finite LL wires with adia- lem was used. The finite LL wire is modeled by an effective
batic contacts to the reservoirs the electric conductance is nttansmission coefficient which in the Landauer-Buttiker ap-
renormalized by the interelectron interactidrand that the proach determines the charge and heat transport between the
thermal conductance is significantly suppresdedspinless leads. We predict that the thermopower of a LL with an
electrong for a strong repulsive interparticle interactibn'®  impurity is described by a Mott-like formula—it depends
These predictions have a rather simple physical explanationinearly on the temperature and is proportional to the loga-
Since the electrons in the reservoirs are taken as noninteragithmic derivative of the bare(unrenormalized by the
ing particles, one could use the Landauer approach for caklectron-electron interaction®lectric conductance. At low
culation of the electric and thermal conductances. For afemperatureskgT<A, =#s/L (L is the length of the LL
adiabatic LL constriction the electrons are not backscatteregiire, ands is the plasmon velocitythe thermopower is not
by the confining potential of the wire, and consequentlyrenormalized by the electron-electron interactions, and it is
charge is transmitted through the wire with unit probability. described by the well-known formula for the thermopower
Therefore, the electric conductance of a LL constriction CO5, for a system of noninteracting electrofsee, e.g., Ref.
incides with the conductance of a single-channel quantumas) At temperaturesgT>A, the interaction renormalizes
point contact. In contrast, heat is transported in the LL bythe thermopower, and consequently for a strong interaction
plasmons(charge-entropy separatihwhich, for strong in- 5 5 /g?>S;. The renormalization factor is different for
teractions, are significantly backscattered at the “transition’spinjess and spin-1/2 electrons, and the enhancement of the
region between the LL wire and the FL reservoirs, and conyermopower is more pronounced for spinless particles.
sequently heat transport is suppressed. _ Next, we calculate the thermopower for an infinite LL.

The aforementioned studies dealt with spinless electrongiough the situation when the effects of the leads are ex-
and a single-channel LL. However, in many real situations;ygeq appears somewhat artificial from the experimental
the quantum wires may support several @fansport chan-  oint of view, it is useful to elaborate this problem by a
nels, and currently thermoelectric effects in LLs remain,q e fy| LI calculation technique. In particular, we note that
largely unexplored. In this context, we remark that it hasy,o yansnort properties of 1D interacting electrons have been
bggn notetf that the thermopower of a prbard Cha'.n’ n thestudied mostly for an infinite LL, and thus the evaluation of
vicinity of a Mott-Hubbard phase transition to a dielectric the thermopower for this case represents an interesting and
phase, can be galculatgd usmg'the MOt.t forn(ts;lae,.e.g., important theoretical problem. We show that for an infinite
Ref. 19 for_ noninteracting f_ermlons. This observation haSLL wire with an impurity the thermopower is described by
been exploitet? in a derivation of the thermopower of a T .

the Mott formula,S,y, multiplicatively renormalized by the

homogeneous infinite Hubbard chain in the limits when the . .
electron-electron interaction.

Hubbard model can be mapped onto a model of spinless For an infinite LL the renormalization factor decreases

Dirac fermions. . . : .
In light of the above, we report here on studies of heatWlth increase of the interactiorf(g<1)~g%. This result

i L oes not contradict our previous claim, since the two prob-
transport through a multichannel LL constriction connecte o . . . .
S . L ems under studyinfinite LL wire and LL wire adiabatically
to Fermi liquid leads, as well as investigations of the ther-

mopower(Seebeckand Peltier effect in a LL wirdFig. 1). conne_ct_ed to metallic I_ea)jare not |dent|(.:a.l.. In particular,
First, we study heat transport through a multichannel LLthe dnvmg vo_Itage which enters the defmmon qf the ther-
[nopower is different for the two cases in question. For an
infinite LL it is the voltage drop/ across the impurity. In the
case of the LL constriction the bias voltagkis defined as
the difference of the chemical potentials of the leads,
=Apule. It has been showh that for a strong impurity
(weak tunneling V=g?U. Thus the thermopower of a LL
yvire, when expressed in terms Of is enhanced by interac-

fipn. This derivation supports our finding that the strong in-
c1terelectron interaction strongly enhances the thermopower of

tion of the chemical potentiak demonstrates a staircase-like
behavior. We show that at low temperatuiies To=%vq/L

(vg is the characteristic velocity, which is determined by the
strength of the confining potential, ahds the length of the
LL wire) the steps in the conductangd u) are practically
unaffected by electron-electron interactions. On the othe
hand, strong interactions suppress the heat conduction
temperaturesT~T,; however, the steps are pronounce ) . .
even in this high-temperature region. Subsequently, wé LL V\_"th an impurity. . _
evaluate the thermopower for a finite LL wire connected to 't IS Well known (see, e.g., Ref. J4that in the linear-

FL leads. In this case a simple physical approach to the prod€SPonse regime the Peltier effect is determined by the same
thermoelectric coefficient as the Seebeck effect. However, in

the nonlinear regime the Onsager symmetry relations be-
tween the transport coefficients cease to be valid, and the
Peltier coefficient foreV=kgT (V is the bias voltagede-
scribes an independent thermoelectric phenomenon. We
evaluate the nonlinear Peltier coefficient for an impurity-
containing LL wire connected to leads. The phenomenologi-
cal approach, when the finite LL wire is modeled by an ef-

fective transmission coefficient, does not predict the
FIG. 1. Schematic of a Luttinger liquidLL) nanowire of lengtiL, con-  yangrmalization of the nonlinear differential Peltier coeffi-
nected to Fermi liquidFL) reservoirs that are kept at different temperatures.

The impurity (scattering potential, denoted B is placed in the middle of cient by the im?raCtionj
the LL wire. The paper is organized as follows. In Sec. 2 the thermal
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conductance of a multichannel LL is studied. In Sec. 3 the v, [mhoy v,
thermopower of a LL constriction with an impurity is evalu- 01= Pl gyl <1;
ated in a phenomenological approach. In Sec. 4 bosonization 1 0 vitu;

technique in conjunction with a tunneling Hamiltonian v
mgthod is used for a calgulatlo_n of the thermopower Qf an  g,= _2:,/v2/01g 1. (5)
infinite LL. In Sec. 5 we investigate the Peltier effect in a S2

Luttinger liquid. The main results are summarized in Sec. 6. \te that for spin-1/2 interacting electrons the Hamil-

tonian of a single channel LL is given by E@l) with N

=2 andvi=v,=v. In this case the velocity of the “spin”
2. INTERACTION-ENHANCED STAIRCASE BEHAVIOR OF modes,=v is not renormalized by the interaction, i.@4
THE THERMAL CONDUCTANCE =1. In the following we will see that “spin” channels offer

) “easy pathways” for heat transport through a LL constric-
To calculate the thermal conductance of a multichanneljy,

LL wire adiabatically connected to 2D reservoirs of nonin- In the absence of electron backscatterisge discussion
teracting _electrons we will use .the multlmode LL model de'belovxb the plasmon modes are noninteracting. Consequently,
veloped in Ref. 16. The Hamiltonian of the model in the ihe | andauer approatttan be used for calculation of the
boson representation takes the form thermal conductance. The corresponding expression

N 200 reads 2
H=> fdx ) +—~vi(u))? N
= 2mn; 2 1 = o s
K(T)==> | dee? ——|ty(e), (6)
U N Thi<t Jo de
0 ’ ’
+ 71,121 ni”JJ dx LU (X)uj (x), (D) wherefy=[expl/keT)—1] L is the Bose-Einstein distribu-

tion function of the plasmons, and(¢) is the probability of

whereu;(x) is the displacement operator of thith mode;  plasmon transmission through timh mode of the LL. As
ui=duj/dx; p; is the conjugate momentum, with we have said, we assume here that the contacts of the LL to
[ui(x),pj(y)]1=i%6;;8(x—y); n; is the number density of the Fermi liquid reservoirs are adiabatic, which means that
the electrons in th¢th mode and); = #in;/m is the corre-  there is no backscattering of charged excitations in the LL.
sponding Fermi velocity, antd, determines the strength of Formally Eq.(6) represents the thermal conductance of a
the electron-electron interaction, which is assumed to be lopurely bosonic noninteracting systéfhAs was shown in
cal: U(x—y)=Uyd(x—y). We introduced into the Hamil- Refs. 11 and 12, this formula also applies to an adiatfatic
tonian in Eq.(1) a smooth functiorf, (x) that restricts the electron backscatterind-L wire, where the heat is trans-
electron-electron interaction to a finite region of length  ported by bosonic excitationglasmong whose dynamics,
The electron reservoirs are modeled asN{Bhannel Fermi  in the absence of local scatterers, is described by a quadratic
gases and they are represented, in the boson form, by thdamiltonian. These considerations lead one to conclude that
noninteracting part of the Hamiltonian. Eq. (6) yields the exact thermal conductance of a LL wire in

The Hamiltonian in Eq(1) is quadratic and can be easily the absence of impurities. However, the plasmons could be
diagonalized. In diagonal form it describBsnoninteracting backscattered by the “transition region” between the LL and
“bosonic” modes with velocitiess, (n=1,...N) which are the FL reservoirs. Since the widthof the transition regions
adiabatically transformed intdl modes with velocitiew obeysh <d<L, we can model them as zero-width bound-
(n=1,...N). The latter modes correspond to tNenoninter-  aries located at=0 andx=L. Consequently, the mismatch
acting electron channels in the leads. The plasmon velocitiesf the plasmon velocities at the boundaries will cause strong

s, are determined by the equatidn backscattering of the plasmons. Thus the transmission coef-
ficientt,(e) in Eq.(6) can be obtained by taking the function
N Un Th fL(x) in Eg. (1) to be of the formf (x)=0(x)H(L—Xx)
nzl r% = U_o' 2 [whered(x) is the Heaviside step functipand matching the

wave functions of the plasmons at the boundaries. Since
For a two-channel=2) case the above equation can there is no channel mixing,(e) takes a form analogous to

be easily solved, yielding that calculated in Ref. 12:
2 -1
1 1 B O D P e
31(2)=\/§(u§+u§)i§\/(ui—u§)2+(2U0/wﬁ)zvlvz, ta(e) Cosz(An T\t gn) sz(%) ’ @

3 whereA,=%s,/L is the characteristic energy scale for the

where finite LL wire, and the plasmon velocitiess (n=1,...N) are
determined by Eq(2). Note that for spin-1/2 electrons the
Us2)=v12)V1+ U/ (mfivy ). (4) spin mpde is not rgnormallzed by |gteract|on, and the cor-
responding correlation parameteg$ =1 (n=1,..N/2);
In the limit of strong interelectron repulsion, i.el, i.e., for the “spin channels” one ha®=1, and the heat

>mhvy o), the interaction parameters of the two-channeltransport associated with spin density wave excitations is not
LL, defined asg,=v, /s, take the form ¢,=v5,) affected by the electron-electron interaction.
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The expressions given in Eq®), (5), and(7) generalize
the problem of heat transport through a single-mode spinless
LL 12 t0 a multichannel LL. Now the Fermi velocities,
depend both on the chemical potentjialand the “trans-
verse” quantum numben which characterizes the quantiza-
tion of the transverse electron momentum. For a parabolic
confining potential U,(y)=mQ?y?/2 the corresponding
transverse energy takes the valuB§=#Q(n—1/2) (n
=1,...N), and the Fermi velocity of thath mode is given

by

1 1/2
g

no 1
vn—v00<m+ E—n) (8)
wherev,= 2 Q/m. The appearance of the step function in
the definition of the Fermi velocities of the multimode LL
results in a staircase behavior of the elec®icw) and ther-
mal K(u) conductances as functions of the chemical poten-
tial .

An important comment concerning Eq$)—(8) is war-
ranted here. Note that E/) is an exact result for noninter-
acting plasmon excitations—that is, when the electrons are
not backscattered by the confining potential in the LL con-
striction. Such a condition is fulfilled at low temperatures
and for chemical potentials satisfying##Q(n—1/2). In
the vicinity of u=2Q(n—1/2) an additional electron mode

is converted from an evanescent to a propagating mode. Th : ; - !

. . - . tion of the dimensionless chemical potential(% )+ 1/2 for several val-
|mpI|es that upon reaChmg the threSthor entrance into ues of the strength of the electron-electron interactilgy (w#ivg). In (a)

the contact, the character of the corresponding mModee temperature was taken to Be kg TL/(%ivo) =0.1, and in(b) T=10.
changes, and in doing so the mode is strongly influenced by

the confining potential. Consequently, at such threshold val-

ues of the chemical potential the assumption of adiabaticityvhere G is the electric conductance arid is the cross-

of the LL constriction fails, and in calculating the thermal transport coefficient which connects the electric current to
conductance the contribution due to electron transport need§€ temperature difference for noninteracting particles. These
to be considered. However, it is well known that the trans-CO€fficients can be calculated using a formalism developed
port of charge through a locébf the order of\¢) potential in Ref. 19 and adapted in Ref. 18 to the Landauer scheme.
in a LL is strongly suppressed due to plasmon renormalizaln this approach the transport coefficients are expressed in
tion of the bare scattering potentfaimplying that for suffi-  terms of the transmission probability(e) for an electron to
ciently long wires and for strong electron-electron repulsion@ffive at the drain electrode in théh channel as

the contribution of electron transport to the thermal conduc- N of

tance K(T) is small and can be neglected. Therefore, we  G(T,u)=Go>, f ds(——F)tJ(s), (10
conclude that under such circumstances j.is valid for i=1Jo e

practically all values of the chemical potential except at thegng

very beginning of the steps. We note that at low tempera- N

tures, T<Avy/L, the staircase-like behavior of the thermal L(T, 1) =G ﬁz wds( _ ﬁ) S_Mt-(e) (11)
conductance is practically unaffected by electron-electron in- i %h i=1 Jo de | kgT 177
teraction(Fig. 2a. At high temperature$>#%uv,/L the ther-

mal conductance, although being suppressed in the case E
strong interactiort*2 still demonstrates a clear staircase be-
havior as a function of chemical potentidig. 2b.

EG. 2. The thermal conductance, in units®tk3T/3h, plotted as a func-

ere Gy is the conductance quantum afge —u) is the
ermi-Dirac distribution function of the electrons in the
leads.

Equations(10) and(11) cannot be applied to an infinite
LL, where electrons are not propagating particles and the
3. IMPURITY-INDUCED THERMOPOWER IN A LUTTINGER- conventional scattering problem is “ill-posed.” A general ap-
LIQUID CONSTRICTION proach for calculating transport coefficients in a system of

The thermopower is a measure of the capability of gstrongly intgragting particl_es is the Kubo formalislm, and a
system of charged particles to generate an electromotiviecent publication where it was _used for calculayon of the
force when a temperature gradient is applied across the syf€rmopower for a Hubbard chain can be found in Ref. 15.
tem. In the linear-response regime it can be represented ag}$ May be seen from that study, with the Kubo approach itis

ratio of transport coefficients, difficult to calculate the thermopoyver in the whole range of
external parametergemperature, interaction strength, den-
S(T, )= L(T,u) o) sity of particles, etg, and indeed the final analytical expres-

i G(T,pn)’ sions for the desired quantities were derit’2d only in the
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limits when the Hubbard model can be mapped to a model othe peaks will be universdit will not depend on the con-
noninteracting fermions, for which a Mott-type expressioncrete shape of the confining potentiallo make more-
for the thermopower could be used. definite predictions we need to evaluate the thermopower for

To obtain thermopower results pertaining specifically toa quantum wire with a single impurity.
the transport properties of systems of strongly interacting  Since it is known that in the presence of an impurity the
electrons, and to consider quantum-wires thermoelectric efsonductance of a LL is strongly suppressed, one may naively
fects which could be tested in experiments, we choose téxpect that the thermopow&r<dG/Ju will also be strongly
invoke at first certain simplifiedyet physically reliable ~ suppressed in such a wire. However, as we show below, that
models of strongly interacting electron systems. Such physiis not the case. Instead, we find that for strdngpulsive
cal models of charge transport in LLs of strongly, as well aselectron-electron interactions the impurity-induced ther-
weakly, interacting electrons were proposed in Refs. 6 anghopower of a LL is significantly enhanced in comparison
20 and were shown to yield the same results as those olith the thermopower of a system of noninteracting par-
tained from more conventionghnd rigorous treatments of  ticles.

LL effects®>?* through the use of Landauer-like expressions 10 calculate the thermopower of a finite-length LL in the
for estimating the dependence of the conductance on threésence of a local impuritvhich we place for simplicity at
temperature and on the bias voltage. In this Section and i€ middle of the constrictiorwe will model the effective
Sec. 5 we use such a phenomenological apprésed also  transmission coefficient as

Ref. 22 for studying the Seebeck and Peltier effects in mul-
tichannel LLs.

When a LL is connected to FL reservoirs with given
temperatures and chemical potentials one could make use of
Egs.(10) and(11), with tj(¢) now regarded as the probabil- 4
ity of transmission of the electrongn the jth channel
through the effective potential barrier formed by the LL
piece of the wire. For a wire which is adiabatically connected  teff( )=t ()
to the leads the transmission coefficient is unity as long as
we neglect the backscattering of electrons by the confining
potential. For a perfect wire the backscattering effect is exHere to(¢)<1 is the bare transmission coefficient deter-
ponentially small for practically all values of the chemical mined by the unrenormalized scattering potertties restrict
potential, except at the narrow regions in the vicinity of con-ourselves to a single-mode kLA =#s/L is the character-
ductance jumpsgstep$ where an additional mode is con- istic low-energy scalés is the plasmon velocily and A is
verted from an evanescent to a strongly propagating modéhe cutoff energy, which for a purely 1D LL is of the order of
Such a physical picture results in a staircase-like behavior dhe Fermi energyEr. The exponenta depends on the
the conductance as a function of the chemical potential an@lectron-electron interaction strength and is different for
is often modeled by abrupt jumps of the electron transmisspinless and spin-1/2 electrotis:
sion coefficient from zerdgreflected modeto one(transmit-

eff — A'— ‘
t*(e)=ty(e) A for |e—Eg|<AL, (12

e—E

A

for |8_EF|>AL' (13)

ted modé¢. This model is too simplified for real quantum 1 Uy | Y2

point contacts, where the specific features of the confining ¢=2 5_1); g=|1+ wﬁvF) for s=0, (14
potential could be important for a correct description of the

transition region between the conduction plateaus. However d

for strongly interacting electrons this simple model, which

does not depend on the details of the bare scattering poten- 1

tial, could be a correct approximation. Indeed, the transmis-  _ < _ ;. 9.=2 1+ 0 ) for s=1/2. (15)
sion of electrons through a long but finite LL is determined Os Thug

by an effective scattering potential that includes the effects of
electron-electron interactions. This potential for sufficiently ~ The transmission probabiliti™ in Eq. (12) results in an
long wires and for temperaturelsgT<Eg quenches all expression for the linear conductance which coincidgsto
modes whose bare transmission coefficiggtare not very an irrelevant numerical constanwith that obtained in Ref.
close to unity(see the corresponding discussion in Ref).. 22 25 via a renormalization group calculation. In fact, the same
Since according to Eqg9)—(11) the thermopoweS(T, u) expression has been uSddr estimation of the temperature
«dG/du we observe that for a multimode LL constriction dependence of the LL conductance in the limit of strong
the thermopower vanishes on the conductance plateaus andriteraction ¢<1); this is also the limit of interest to us,
peaks at the conduction steftkat is, at the transition regions since for weak interactions LL effects would be much
from one conductance plateau to the nefte qualitative weaker.

distinction of the thermopower in a LL from that evaluated The bare transmission is commonly assumed to be a
for noninteracting electrof$®*lies in the shape of the ther- smooth function of the energy aroulig , i.e.,

mopower peaks. For strongly interacting electrons a simple

approximation in which thénow effective transmission co- ato
efficient is modeled by a Heaviside step function could be a  to(e)=to(Eg)+(e— EF)(E
quite reliable procedure. Then the temperature behavior of

(16)

e=Eg
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With this form, Egs.(10) and(11) yield

GLU(T)=Goto(Eg)

YR
— ) kBT<AL!

A
x ea kgT\“
21-2" P (I+ a) ()| | . A=kgT<A,
17
and
m2k3T )
Lu(M)=Go 36 to(Ep)
A\e
X y kBT<AL,
X
6 L kgT|“
;2(1—2 1 “)F(3+a)§(2+a)(T) , kgT=A_,
(18

wherel'(x) and {(x) are the gamma function and the Rie-

mann zeta function, respectively.
From Egs.(9), (17), and (18) we conclude that at low

temperaturegsT<A| the thermopower of a LL constriction
with an impurity is not renormalized by the interelectron
interactions. Instead it is described by a Mott-type formul

for noninteracting electrorf$,

a2 ké

So(T)Z———< (19

dInGO%&)
de - !

E

whereGO(¢) is the correspondin¢pbare conductance of the

noninteracting electrons. This finding is not surprising, sinc
atkgT<<A| the electrons in the leads determine the transport

a

Krive et al.

From Eqgs.(20)—(22) we observe that the LL effects on the
thermopower are most significant for strong interactions,
Uqo>mhog, and that they are more pronounced for spinless
particles than for spin-1/2 electrofiBig. 3).

Since for the thermopower the interaction dependence
factorizes. Equatiof20) could be readily generalized for the
case of wires with dilute impurities, where the average spac-
ing between the impurities is large enough so that the impu-
rities act incoherently. In this case the thermopower will still
be described by Eq20) at temperaturelsgT>7%sn, wheren’
is the mean concentration of the impurities. An interesting
example is a LL junction made of a perfect LL wire of length
L connected to leads through a potential barrier at the con-
tacts. The thermopower of such a LL junction for tempera-
tureskgT=A, is described by Eq919) and (20) with the
total (bare conductanceG®=GJGY/(GJ+GY), where GY
and Gg are the(bare conductances of the contacts.

The thermopower, being the ratio of transport coeffi-
cients, is less affected by interaction than the transport coef-
ficients themselvetEgs.(17), (18)). It is the prefactors in the
power-law dependences &f(T) andL(T) on the tempera-
ture that determine the dependence of the thermopower on
the interaction strength. In the phenomenological approach
developed above, the quantitative correctness of these coef-
ficients cannot be proved. Therefore, we conclude that the
electron-electron interaction enhances the thermopower of a
LL wire, and we will attempt to find a more rigorous treat-
ment of the problem. In the next Section we evaluate the
thermopower of an infinite LL with an impurity by making
use of the bosonization technique when calculating the cur-
rent in the wire induced by the bias voltage and by the tem-
perature difference.

e4. THERMOPOWER OF AN INFINITE LUTTINGER LIQUID

Let us consider an infinite LL wire with a single impurity

properties of the LL constriction. However, at temperatureslaced(for definitenessatx=0 (i.e., the middle of the wire;
kgT>A_ the thermopower, being still a linear function of see Fig. 1 It is known that for a LL with repulsive electron-
temperature, undergoes a strong multiplicative renormalizag|ectron interaction the charge transport through an impurity

tion:
SLL(T=A Tkg)=C4(9)Sy(T),

3 1-27""{(a+2)
Cs(g)_? 1_217a é’(a)

Note that unlike the electric conductanG  (T) and the
cross-coefficient. || (T), the thermopowes, | (T) does not

(20

(a+1)(at+2).

depend on the cutoff parameter, and therefore the interaction-
and spin-dependent fact@,(g) cannot be absorbed into a

definition of A.

For noninteracting electror@,(g=1)=1, and the Mott-
type formula(Eqg. (19)) holds (as it should for all tempera-
tures kgT<<Eg). In the limit of strong interactionU,
>’7Tﬁl)|:

Uo

Co(g<l):12ﬂ_3ﬁvF, (21
Ug
C1/2(9<1)=6m- (22)

12

C(g)
(=)}

Uy /(mtivy)

FIG. 3. The renormalization paramete¢g) and the dimensionless electron
interaction parameteg plotted versus the dimensionless strength of the
electron-electron interactiody /(w#hvg) for spinless(solid line) and spin-
1/2 (dashed ling electrons.
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is sharply suppressed at low temperatures. Therefore, the Léan expect the contributionJf) to the charge current in-

is “split” by the impurity into two disconnected semi-infinite duced by the temperature gradient. The Hamiltonian given
segments, and the charge current through the impurity can bgy Eq. (25 with a constant bare tunneling amplitude does
evaluated with the use of the tunneling Hamiltonian methodnot allow one to evaluate this contribution. To obtain the

We start with the Hamiltonian

H= > Homt+H,
m=1,2

where Hg,, describes two i=1,2) identical semi-infinite
parts of the LL wire. In the bosonic form it reads
sh 2 -1 2

HO,ng dX[g((?X('Dm) +4g (ﬁxq)m) 1. (23
Heresis the plasmon velocityg=uv /s is the LL correlation
parameterd (x) is the displacement field, arédl,(x) is the
field complementary td,(x), obeying the commutation re-
lation (see, e.g., Ref. 25 [0O,(X),P,(x")]
=271 Oy SGNE—X"). The tunneling Hamiltonian is

0 oo .
Hi= fﬂcdxlfo X[ (Xo| T|X1) th3 (X2) th1(X1)

(x| TIX2) 4 (X0) Pa(X2)], (24)

where (.4 is the electron annihilatiokcreatior) opera-
tor, the indexm labels two identical semi-infinite segments

of the LL wire, and(x2|'T'|x1> is the tunneling matrix element

in the coordinate representation, i.e., the amplitude for the

process of electron tunneling from the poigtto the point
X2.

Let us introduce the “slow” annihilation and creation
operators of two types—for right- and left-moving electrons:
Pm(X) =€PPW | (X)+ e PRP L (X). At first we suggest
that our contact is pointlike. Then one can simplify the tun-
neling Hamiltonian and write it in the form

Hi= 2 (\oW3, (0)Wy, (0)+h.),

r1.,rp

(29

where \Ifmyrm(\I’,;’rm) is the operator of annihilatioricre-

ation of an electron from thenth half of the wire(for right-
moving (R) electronsr ,= + 1, for left-moving(L) electrons
rm=-—1).

We assume that the bare tunneling amplitigés small.
Then the tunneling rate of electrons through the barrier cal
be obtained to leading order from Fermi’'s “golden rule.”
The total rate of electrons from the l€ftl” ) LL to the right
(“2" ) LL is of the form (see, e.g., Ref. 27

_277 2

Pip=—- [(E1EH | E1ES)|?
Eq/EpEqEg

eV

X P125 Ei+ Eé_ El_ E2_ 2

(26)

whereP, is the probability of finding the system in the state

|E.E,), andV is the bias voltage. The standard evaluation

(see below of the tunnel currentd(V,T)=¢e[l'15(V,T)
—I'5(V,T)] results in the well-known expression for the
conductanceés(T) of an LL with an impurity?

Let us assume now that the temperatures of the Tgf} (
and right (T,) parts of the wire are different. In this case one

temperature-induced current we have to take into account the
finite size of the barrier. We can do it by modifying the
tunneling Hamiltonian. The modified Hamiltonian includes
extra terms containing the derivatives of the field operators:

Hi= 2 (\o¥3,,(0)V¥y,,(0)+h.c)

r1.rs

+ 2 {=ifing[r W, (0)0, Wy, (0)

r1.rs

—120x% 5, (0)Wy, (0)]+h.c}. (27)

Here |[\4| is a small additional parametef\g|pg~|N\ol).
Notice that this form of the Hamiltonian corresponds to a
tunneling amplitude which depends upon the momentum of
the tunneling electron{p,|T|p1)=Ng+N1r1g1+\1r205,
whereq,=pm—mPr IS the momentum of the electron to-
ward the Fermi level.

Now the total electron current through the barrier can be
written in the form

J=2ie|\|2 >

r1.rs

X(W{, (DW1, )+ 2ieh(No\}

JMdtsin(th)(‘I’Z,rz(t)‘I’;,rQ

+ oo
+AEND) D dtcogeVt)

r1.ro —0

X(ra( Wi, (L)W 1 Y(Wo (D5, )

x—0

+ oo
—2ieh(NoAE +NENY) > dtcogeVt)

rlrrz —

X0 War (6 )W (W1, (DW, ), (28

x—0

where(...) denotes the thermal average, ahgi‘,rm(t) are the
field operators in the Heisenberg representatiﬁr}n,rm
r=Wp,, (0). The correlation functions in Eq(28) can be
calculated by making use of the bosonization formula

J2ma

Here a is the cutoff parametera~#fvg/Eg), and U,;'rm is

the unitary raising operator, which increases the number of
electrons on the branah, by one particle but does not affect
the bosonic excitations. We will not specify its form, since
this operator enters the formulas we are studying only in the
combinationUU * =1. Now the bosonic field® (x,t) and
0,(x,t) are in the Heisenberg representation.

In our case we have to impose a boundary condition on
the displacement fieldb,,(x) at x=0 to account for the
semi-infiniteness of each segment of the LL wire, i.e.,

P,(0)=P,(0)=0. (30)

\l,m’rm(x,t): Ur';’rme—i[rm(IJm(X,t)-%—(“)m(x,t)]/Z.

(29
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Besides this, the boson fielés,,(x) in Egs.(23), (29) satisfy INol2€® (1 L\ 7keTa 2lg—2
the boundary condition G(T)= amh%l 59 ( hoe ,
1
j(x=0)=5—d,0,(0)=0. (31) Jr=kgATL(T), (37)
Te 3
The boson fields obeying the boundary conditions E88), L(T)= W()\O)\I +)\’5)\1)kBTB(§,gl)
(31) in the momentum representation take the form UF
WkBTa 2lg=2

o 1/2 o

@m(x)=if dp(?) (bp—b;)cos(gx), ><< hvg

P Here B(x,y)=T'"(xX)I'(y)/T'(x+y) is the beta function.
Equation(36) coincides with the one found in Ref. 28. It
predicts the power-law dependence of conductance on tem-
perature. Equatio37) is a new result. From Eq$36) and
whereb, and b; are the standard bosonic annihilation and(37) one easily gets the thermopower
creation operators[bp,b;,]z Sp.p1); g=s|p| is the energy

(0]

too 2s 1/2
‘Dm(X)=f dp( Og) (bp+b;)sin(§x
* P

: (32

2 _2 -1
of bosonic excitation with momentum S(g)=— Kem 8(3/2’971) T . 30\0)\*{ FAEN).
With the help of Eqs(29) and(32) it is straightforward e B(1/12g7%) [h|” ve
to evaluate the correlation functions. In the vicinity of the (38)
contact k~0) one gets the desired correlator For noninteracting electrong&1) Eg. (38) has to trans-
1 form into the Mott formula, Eq(19). This allows us to relate
<‘1’:1,rm(x1t)‘1’m,rm>2 o the parametera, A of _the_ tunneling Ham_Htoman to the
conductance and its derivative at the Fermi energy
1 WTmX 2(1g+ry) 2 . X 1 0"GO
| TTiveyia sinl‘(meX)} velng2 Mo T Ao = Fo g - L (39)
E=EF
% 1 GAL T where G° is the bare(unrenormalized by interactiprcon-
1+iven/a sinh@Ty,n) " ductance. Thus, the thermopower of an infinite LL takes the
(33 form
where y=t—x/s and p=t+x/s. By substituting Eq.33) 7y KaT 9ln Go(s)‘ 39
into Eq.(28) we find the total electron current. In the linear- S(9)= - 2+g e de | __ 2+g " (40
response approximationV—0, T,-T,=AT—0, the °Fr
voltage-induced Jy) and temperature-induced) currents We showed that the electron-electron interaction in 1D
take the form systems modeled by a Luttinger liquid multiplicatively
5 200 renormalizes the thermopowsy of the Fermi liquid. For an
CINol%€? [ t Tt infinite Luttinger liquid the renormalization factor decreases
Jy=8i (277—a)2vfmdt(1+ivpt/a)2/g sinh(T) ' \(lilgl increa(sji_ng ir;1teracti0|n. _At f(ijrst_ glgr!cehthis re_sult, Eq.
(34) 40), contradicts the conclusion derived in the previous Sec-
tion. Notice, however, that the two problems in question are
16i e kgAT (= dt not equivalent. It is well known, for Iinstanc_e, that the de_pen.—
JT=—2()\O)\’{ +AgN1) f — dence of the conductance on the interaction strength is dif-
(2ma) Urp J7=Tt ferent for an infinite LL and for a finite LL wire connected to
oy = 20 reservoirs of noninteracting electrofsee, e.g, Ref. 20To
| 14i vet Tt [Ft costTt)— 1] rglate t'he two problem; under study we will follgw the con-
a sinh(Tt) siderations pre_sente_d in Ref. 16. In that paper it was shown
that for a LL wire adiabatically connected to electron reser-
_ _ vt -1 voirs the voltage droly across the strong impurityno elec-
X[ TtcoshTt)—| 1+i— (35 tron tunneling is connected to the voltage drépmeasured
a on the leads by the simple relatidh=g?U. This formula is

the manifestation of the Coulomb blockade phenomenon.
Physically it is evident that in the limit of strong interaction
g°~hvgle?*<1 the shift of the chemical potentials in the
cated. Fortunately we are interested only in the limit0.  |€2ds @u =eU) cannot change significantly the charge
In this case the asymptotics of the above integrals can b_gensrc_les in the_ LL wire “split” into two parts_ bY a strong
easily found. Both current3,  are power-law functions of impurity potential. So, to relatéat least qualitatively the

the small dimensionless parametex=YrkgTa/five<1. The thermopowerS(g) evaluated for infinite LL to the ther-
leading terms in the asymptotics-YO are mopowerS, | (g) of a LL smoothly connected to the leads of

noninteractive electrons we first of all have to replace the
Jy=VG(T), (36) voltageV in Egs. (26), (28), (34), and(36) by g?U. Then

Here T=mkgT/%, where T=(T,+T,)/2 is the mean tem-
perature.
The integrals in Egs(34) and (35) look very compli-
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S.L(9)~S(g)/g? g<1 S,/g. This means that for a real for the cur_rent as a function of voltage at low temperatures
situation, when the voltage drdp is measured between the (T—0). Since the backscattering of the electrons by a local
leads, the interaction enhances the thermopower. This suphpurity in an infinite LL leads to a power-law dependence
ports our claim based on the calculations done in the phedf the electric current on the voltagét may be expected,
nomenological approach. Notice that there is still a discrepand is indeed found in our model, that for a finite LL this
ancy (by a factorg ' >1) between the above estimates and behavior would cross over to ordinary Ohndie- V behavior
Eq. (40) in the limit of strong interaction. This inconsistency for eV<A . However, the analysis given in Ref. 30 re-
could be attributed to the qualitative nature of our estimavealed the occurrence of additional oscillations of the current
tions based on the phenomenological mo@&sc. 3. as a function of the bias voltage, which do not appear in our
model. Underlying these oscillations is the multiple scatter-
ing of the plasmon by the impurity potential and at the
boundaries of the LL, and the phase of these oscillations is
According to the Thompson relation for the cross-sensitive to the position of the impurity. While our approxi-
coefficients of the X 2 matrix of transport coefficients in the mation scheme does not reveal these mesoscopic oscilla-
linear response theory, the Peltier coeffici@éh{T,V) (de- tions, one may expect that such fine structure in IheV
fined as the ratio of heat current to the electric current in theharacteristics would be obliterated upon averaging over the
absence of a temperature gradient across the system position of the impurity.
With the above assumptions, and using E®) in Eq.

5. NONLINEAR PELTIER EFFECT IN A LUTTINGER LIQUID

(T,V)= J_Q) , (41) (42), we obtain for the differential electric conductance at
Je/ a120 kgT<eV,
obeys the relatiohl = —kgTS, whereSis the thermopower. AN A\
It is rather easy to verify that this relation also holds foraLL 7y ~ Golo(Er)| 7| for eV<A,, (44)

if eV<kgT, and thus the linear Peltier coefficient in the LL
can be described using Eq47)—(22). In the nonlinear re- and
gime, eV<kgT, the Onsager symmetry relations between 43 a
.. . . e L
the transport coefficients cease to be valid. For noninteract- a_V:GOtO(EF)(ﬁ) for eV=A, . (45)
ing electrons the nonlinear Peltier effect has been studied in o _ _
Ref. 29, and here we remark on its behavior for a LLwith an ~ In a similar fashion we obtain for the heat current at

Impurlty kBT<eV
In the Landauer-Buttiker approach the electric and heat AVENE
currents between reservoirs of noninteracting electrons at ﬁ—\?zﬁ (’)(EF)<7) (T) for eV<A|, (46)
fixed temperatures and chemical potentialg, are given
by'8:1° and
JTv—GOtheff f f 42 Do _ 0 ka2 (V)" for even 4
(TV)= > | det(e)fa(e)~fale)]. (42 V= ED| 5| 5y forev=al @7

1 (= From Eqs.(44)—(47) it is readily seen that within the
Jo(T,V)= ﬁf de t®M(e)(e—w)[f1(e)—To(e)], (43 framework of our calculations the nonlinear Peltier coeffi-
0 cient for a symmetric LL constriction with an impurity

where placed at the middle of the LL wire does not depend on the
_ 1 interelectron interactions, and the differential Peltier coeffi-
fiio)(8)= ex;{% +1 cient is given by(atkgT<eV)
he distribution f ° : f the el i th oy _ddglV 1(eV 2[9Inty(e) 48
are the distribution functions of the electrons in the reser- (V)= 930V el 2 T ) (48)

VOIrS, w1 (2)= u+ e V/2 for a symmetric LL wire, an¥ is the e=Eg

voltage drop across the wire. In the following we will use  \ye remark, however, that an influence of the interelec-
Eq. (12) (as in Sec. Bto model the transmission probability 4, jnteractions on the Peltier coefficient may occur for

ff . . . . . . .
t*Y(E) for a finite LL with an impurity placed in the middle ,qymmetric LL wires or when the aforementioned mesos-

of the_wire. ) ) . copic oscillations are included.
Prior to proceeding with our analysis we note that the

J—V characteristics of a finite LL connected to FL reservoirs

were studied in Refs. 30 and 22 using different approacheg.' CONCLUSIONS
In Ref. 22 the current—voltage dependence was calculated In this paper we have used physically motivated models
using a qualitative physical approach, similar to that em+o investigate the heat transport through a multichannel LL
ployed by us in the present study, while a more rigorouswvire and also the thermopower and Peltier effect in a single-
treatment of charge transport through a finite LL with anchannel LL with an impurity.

impurity, based on renormalization group analysis, was (i) For a multichannel LL wire, we predict that electron-
elaborated in Ref. 30. Unlike the linear-response transporlectron interactions would stabilize the staircase-like behav-
regime, where the above two approaches arrived at similaor of the thermal conductand€(T, ) as a function of the
results, in the nonlinear regime they yield different behaviorschemical potentia{which can be controlled through the use
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